Biochemistry

12P/210/30

139

Que	estion Booklet No
(To be filled up by the candidate by b	lue/black ball-point pen)
Roll No.	
Roll No.	
(Write the digits in words)	***************************************
Serial No. of Answer Sheet	
Day and Date	(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, whereve: applicable, write the Question Booklet Number and the Set Number in appropriate places.
- **6.** No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and Roll No. and OMR sheet No. on the Question Booklet.
- 7. Any changes in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- **9.** For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- **14.** If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आक्रण-पृष्ठ पर दिये गये हैं।]

Total No. of Printed Pages: 18

No. of Questions: 150

Time	: 2 H	ours]				[Full Marks : 450				
Note	: (1)		mark	will be	deducte	d fo	r each ince		carries 3 (three) swer. Zero mark	
	(2)	If more than answer, choose				ers s	eem to be a	pproxima	ate to the correct	
1.	Ace	tyl CoA directl	y giv	es rise t	o all <i>exce</i>	pt:				
	(1)	Glucose				(2)	Ketone bo	dies		
	(3)	Cholesterol				(4)	Fatty acids	3		
2.	Ova	ırian reserve is	best i	ndicate	d by :					
	(1)	LH				(2)	FSH			
	(3)	LH/FSH ratio				(4)	Estrogen			
3.	Нур	peraldosteronis	m ca	uses all	except :					
	(1)	Hypokalemia				(2)	Hypernat	remia		
	(3)	Hypertension				(4)	Metabolic	acidosis	٠.	
4.	The	chief mineral o	of bor	ne is :						
	(1)	Calcium oxala	ıte			(2)	Calcium c	arbonate		
	(3)	Hydroxyapeti	te			(4)	Calcite			
5.	Spli	icing is done by	y:							
	(1)	mRNA	(2)	tRNA		(3)	rRNA	(4)	SnRNA	

6.	Which of the	following s	erves as a coen:	zym	e for transketola	se?		
	(1) Thiamir	ıe		(2)	Biotin			
	(3) Pyridox	ine		(4)	Cobalamine			
7.	Malabsorpti	on is caused	by all except :					
	(1) Ascaris l	umbricodes		(2)	Capillaria phill	ipine	ensis	
	(3) Strongyl	oides		(4)	Giardia lamblia	ì		
8.	Shine-Dalga	rno sequenc	e in bacterial m	RN.	A is near :			
	(1) UAA	(2)	UAG	(3)	AUG	(4)	UGA	
9.	A segment of known as:	of a eukaryo	tic gene that is	not	represented in I	he n	nature mRI	NA is
	(1) Intron			(2)	Exon			
	(3) Plasmid			(4)	TATA box			
10.	Eukaryotic c	ell membrar	ne is formed by	all e	except :			
	(1) Choleste	erol	•	(2)	Lecithin			
	(3) Triglyce	rides		(4)	Carbohydrates			
11.	Insulin is res	sponsible for	all except :					
	(1) Glycolys	sis		(2)	Glycogenesis			
	(3) Lipogen	esis		(4)	Ketogenesis			
12.	Free radicals	in lens are h	neld by all <i>excep</i>	ot:				
	(1) Vitamin	Α		(2)	Vitamin E			
	(3) Vitamin	C		(4)	Glutathione per	roxid	lase	
13.	Hyaluronic	acid is prese	nt in :					
	(1) Vitreous	humor		(2)	Cornea			
	(3) Dermis			(4)	Mast cells			
14.	Sertoli cells h	ave recepto	rs for :					
	(1) Inhibin	•		(2)	Melatonin			
		ing hormon	e .	(4)	Follicle stimula	itino	hormone	
	12)		-	\ - /		δ		

15.	. The main excitatory neurotransmitter in CNS is :					
	(1) Aspartate	(2) Glutamate				
	(3) Glycine	(4) Acetylcholine				
16.	Which of the following element is oxidative stress?	nown to influence body's ability to han	ıdle			
	(1) Calcium (2) Potassium	(3) Selenium (4) Iron				
17.	The enzyme associated with the c growing ovarian follicle is:	onversion of androgen to estrogen in	the			
	(1) Desmolase	(2) Hydroxylase				
	(3) Isomerase	(4) Aromatase				
18.	An enzyme that makes a double s template is known as:	randed DNA from a single stranded R	NA			
	(1) DNA polymerase	(2) RNA polymerase				
	(3) DNA topoisomerase	(4) Reverse transcriptase				
19.	Proteins targeted for destruction in e	ukaryotes are covalently linked to:				
	(1) Pepsin	(2) Clathrin				
	(3) Ubiquitin	(4) Laminin				
20.	Which of the following assist in pro	ein folding ?				
	(1) Proteases	(2) Templates				
	(3) Proteosomes	(4) Chaperones				
21.	Restriction endonuclease cut the Div	A into fragments by :				
	(1) DNA polymerase I	(2) DNA polymerase·III				
	(3) DNA ligase	(4) DNA topoisomerase				
22.	The chief organelle involved in apo	otosis is :				
	(1) Nucleus	(2) Endoplasmic reticulum				
	(3) Golgi apparatus	(4) Mitochondria				
23.	Functions of CD4 are all except:					
	(1) Antibody production	(2) Immunogenic memory				
	(3) Opsonization	(4) Activate cytotoxic cells				
	(3) P.	T.O.			

24.	An	tigen-antibody precipitation is maxi	mun	n in :
	(1)	Antigen excess		
	(2)	Antibody excess		
	(3)	Equivalence of antigen antibody		
	(4)	Interaction of antibody with hapter	าร	
25.		nich of the following is seen in a pati ulin ?	ent 1	with severe hyperglycemia receiving
	(1)	Hypokalemia	(2)	Hyperkalemia
	(3)	Hyponatremia	(4)	Hypernatremia
26.	Mo	ost sensitive and specific test for diag	nosi	s of iron deficiency is :
	(1)	Serum iron levels		
	(2)	Serum ferritin levels		
	(3)	Transferrin saturation		
	(4)	Serum transfecing receptor populat	ion	
27.	Glu	stathione present in the membrane of	f RB	Cs is :
	(1)	A lipid	(2)	A dipeptide
	(3)	A tripeptide	(4)	An oligosaccharide
28.	Uri	ne on exposure to air and light turns	blac	ck in :
		Alcaptonuria		Phenylketonuria
	(3)	Homocystinuria	(4)	Maple syrup urine disease
29.	He	me synthesis requires all except :		
	(1)	Iron	(2)	Glycine
	(3)	Vitamin B6	(4)	Selenium
30.	All	of the following are branched chain	amiı	no acids <i>except</i> :
	(1)	Leucine	(2)	Isoleucine
	(3)	Lysine	(4)	Valine
31.	Res	piratory acidosis may be due to :		
	(1)	Pneumonia	(2)	Vomiting
	(3)	Hyperventilation	(4)	Starvation

32.		ich of the follow Alanine	_	amino acid does Valine		have a codon?	(4)	Methionine
	(1)	Alaimie	(2)	Vaiite	(3)	Taurnie	(4)	Menhonne
33.	All	of the following	g bio	chemical pathw	ays (occúr in mitocho	ondri	a except :
	(1)	Krebs Cycle			(2)	Ketogenesis		
	(3)	Fatty acid oxid	latio	n	(4)	Fatty acid syn	thesi	s
34.	Ma	lonate competiti	ively	inhibits :				
		Furnarate dehy			(2)	Succinate thick	inase	2
	(3)	Succinate dehy	drog	genase	(4)	Aconitase		
35.	Ace	etyl CoA carbox	ylase	e is :				
		An oxidoreduc	•		(2)	A transferase		
	(3)	A ligase			(4)	A hydrolase		
36.	Beta-oxidation of odd chain fatty acids produces:							
		Acetyl CoA		,	(2)	Propionyl CoA	1	
	(3)	Malonyl CoA			(4)	Succinyl CoA		
37.	Dec	creased glycolyt	ic act	tivity impaires o	XYZ	en transport by 1	Hem	oglobin due to
	(1)			ion of 2,3 bispho				J
	(2)	Low levels of o	oxyg	en				
	(3)	Reduced energ	y pr	oduction				
	(4)	Reduced produ	uctio	n of hemoglobi	n.			
38.	The	e main enzyme r	espo	nsible for activa	ition	of xenobiotics is	s:	
	(1)	Glutathione-S	- trai	nsferase	(2)	Cytochrome P4	150	
	(3)	Cytochrome P	450 r	eductase	(4)	Glucuronyl tra	ınsfe	rase
39.	W	hich of the follow	wing	statement is co	rrect	about Vitamin I	3 12 3	,
	(1)	The coenzyme	form	ı is Vitamin B 12	itse!	lf		
	(2)	It requires an ir	ntrin	sic factor for its	abso	rption		
	(3)	It is involved in	ı the	transfer of amir	10 gr	oups		
	(4)	It is present in	plant	tsources	_			
				(5)				P.T.O.

!2P/210/30

40.	Phenylketonuria is	due to deficiency	of:		
	(1) Phenylalanine	hydroxylase	(2) Ph	enylpyruvate hy	droxylase
	(3) Homogentisic	acid oxidase	(4) Ty	rosine hydroxyla	ise
41.	In a solution, the solution is	concentration of	H+ ion is	1 × 1 0 moles/I.	The pH of the
	(1) 3	(2) 4	(3) 6	(4)	12
42.	Bacteria capable o	f growing in 3M N	aCI are call	led:	
	(1) Haplophiles		(2) Os	motolerant	
	(3) Aerotolerant		(4) Th	ermophiles	
43.	Glycogen storage c	lisease includes all	of the follo	owing except:	
	(1) Forbe's disease			ory's disease	
	(3) Hers' Disease			derson's disease	
44.	Lesch-Nyhan synd	rome is due to con	aplete defic	ciency of :	
	(1) HGPR Tase		_	nthine oxidase	
	(3) Purine phosph	orylase	(4) Ad	enosine deamina	se
45.	Which of the follow	ving amino acid is	excreted ir	n maple syrup uri	ine disease ?
	(1) Tryptophan	Ü		enylalanine	
	(3) Leucine			ginine	
46.	The minimum num	ber of polypeptid	e chain in i	mmunoglobulin	ìs :
	(1) Two	(2) Four	(3) Six	•	Eight
47.	The osmotic pressi	ure of a solution wa	latina to co	duto malogulos d	•
77.	(1) Size	(2) Shape	(3) Vol		epena on me : Number
	(1) DIEC	(2) Shape	(3) (0)	runte (4)	Nulliber
48.	Bile salts make em	ulsification with fa	at for the ac	ction of :	
	(1) Amylase		(2) Lip	ase	
	(3) Trypsin		(4) Per	osîn	
49.	The epimer of gluce	ose is :			
	(1) Fructose	(2) Ribose	(3) Gal	actose (4)	Deoxyribose
					-

50.		man heart musc	le co	ntains :				
	(1)	D-ribose	(2)	D-arabinose	(3)	D-xylose	(4)	D-lyxose
51.	Ho	ney contains the	hyd	lrolytic product (of:			
	(1)	Lactose	(2)	Maltose	(3)	Starch	(4)	Insulin
52.	Osr	nosis is opposite	e to :					
		Affusion		Effusion	(3)	Diffusion	(4)	Confusion
53.	The	e surface tension	of a	solution is incre	asec	l by :		
	(1)	Bile salts			(2)	Bile acids		
	(3)	Conc. Sulphurie	c aci	d	(4)	Acetic acid		
54.	4. Large amount of teicoic acid polymer is found in:							
		Gram +ve bacte				Gram -ve bacte	eria	
**	(3)	Green algae			(4)	Blue green alga	ae	
55.	Fatty acids can be transported into and out of mitochondria through:							ough:
•	(1) Active transport				(2)	Passive transpo	rt	
	(3)	Facilitated trans	sfer		(4)	Nonfacilitated	tran	sfer
56,	Ioc	line solution pro	duc	es no colour witl	h :			
	(1)	Starch	(2)	Cellulose	(3)	Glycogen	(4)	Dextrin
57.	Bar	fode's solution i	s no	t reduced by:				
	(1)	Glucose	(2)	Sucrose	(3)	Ribose	(4)	Mannose
58.	N-a	cetylneuraminic	c aci	d is known as:		•		
	(1)	Sialic acid			(2)	Hippuric acid		
	(3)	Mucic acid			(4)	Glucuronic aci	d	•
59.	Blo	ood group substa	ance	s consist of:				
	(1)	Lactose	(2)	Fucose	(3)	Maltose	(4)	Mucose
60.	The	component of c	artil	lage and cornea i	is:			
	(1)	Keratan sulpha	ate		(2) Chondroitin sulphate			te
	(3)	Antimony sulp	hate		(4)	Cadmium sulp	hate	
				(7)				P.T.O.

61.	Enz	ymes mediating	trar	isfer of one mole	ecule	to another are	:	
	(1)	Transferases	(2)	Lyases	(3)	Oxidases	(4)	Ligases
62.	Mag	gnesium is requi	red	for:				
	(1)	Aldolase			(2)	ATPase		
	(3)	Dismutase			(4)	Phosphatase		
63.	Thia	amine level is be	st m	onitored by :				
	(1)	Transketolase le	evel	in blood				
	(2)	Thiamine level:	in bl	ood				
	(3)	Glucose - 6 - ph	ospł	nate dehydroger	ase a	activity		
		Reticulocytosis	•	, 0		•		
64.	Phe	nylalanine is the	e pre	cursor of all <i>exc</i>	ept :			
		Tyrosine	-	Thyroxine	-	Epinephrine	(4)	Melatonin
C E	T	1 1	. 11					
65.		dividing cells, sp		-	/6 3			* ***********************************
	(1)	Tubulin	(2)	Ubiquitin	(3)	Laminin	(4)	Keratin
66.	Sub	strate level phos	pho	rylation is seen i	in th	e conversion of	:	
	(1)	Succinyl CoA t	o su	ccinate				
	(2)	Acetoacetate to	alp	ha ketoglutarate	:			
	(3)	Succinate to fur	mara	ate				
	(4)	Fumarate to m	alate	е				
67.	The	carrier of the ci	tric a	acid cycle is :				
	(1)	Succinate	(2)	Fumarate	(3)	Malate	(4)	Oxaloacetate
68.	Fru	ictokinase is pre	sent	in:				
	(1)	Intestine	(2)	Adipose tissue	(3)	Brain	(4)	Heart
00	•			-	•		. ,	
69.			nitro	genous base as		Ch -1:		
	(1)	Ethanolamine Inscital			(2)	Choline		
	(3)	Inositol			(4)	Lipositol		
70.	Pho	sphatidyl inosit	ol is	found in :				
	(1)	Cabbage	(2) .	Cauliflower	(3)	Soyabean	(4)	Apple
				(8)				

71.	The	concentration o	of spl	hingomyelins in	creas	ses in :		
	(1)	Gaucher's dise	ase		(2)	Niemann-Pick	dise	ase
	(3)	Fabry's disease	?		(4)	Tarui's disease		
72.	Rul	BP carboxylase o	an u	tilize following	as th	e substrate :		
	(1)	Water	(2)	O_2 and CO_2	(3)	CO_2	(4)	O_2
73.	Gar	ngliosides are th	e gly	colipids in :				
	(1)	Brain			(2)	Liver		
	(3)	Kidney			(4)	Muscle		
74.	Th	e protein moiety	of l	ipoprotein is kn	own	as:		
	(1)	Apoprotein	(2)	Pre-protein	(3)	Pseudoprotein	(4)	Post-protein
75 .	The	prostaglandins	are	synthesized from	n :			
	(1)	Linoleic acid			(2)	Linolenic acid		
	(3)	Oleic acid			(4)	Arachidonic ac	id	
76.	Cha	aulimoogric acid	l was	s earlier used in	the t	reatment of:		
	(1)	Bronchitis			(2)	Nephritis		
	(3)	Leprosy			(4)	Oedema		
77.	Bef	ore the action of	lipa	se, the fat is emu	ılsifi	ed by :		
	(1)	Lipoproteins		,	(2)	Phospholipids		
	(3)	Digitonin			(4)	Ergosterol		
78.	Lor	ng chain fatty ac	ids a	re first activated	to a	cyl CoA in :		
	(1)	Cytosol	(2)	Mitochondria	(3)	Lysosomes	(4)	Microsomes
79.	The	great majority	of at	sorbed fat appe	ars i	n the form of :		
	(1)	HDL	(2)	Chylomicrons	(3)	DL	(4)	VLDL
80.	Car	boxylation of ac	etyl	CoA to malonyl	Coz	A requires :		
	(1)	Biotin	(2)	FAD	(3)	NAD+	(4)	NADP+
81.	The	prostaglandin :	syntl	hesis is inhibited	by:	L		:
	(1)	Arsenite	(2)	Aspirin	(3)	Fluoride	(4)	Cyanide
				(9)				P.T.O.

82.	In a well fed state, of:	acetyl CoA obtained	d fro	m diet is least	used	in the synthesis
	(1) Citrate		(2)	Acetoacetate		
	(3) Oxalosuccinate	,	(4)	Palmitoyl Co	A	:
83.	Most nonpolar am	ino acid is :				
	(1) Arginine	(2) Glycine	(3)	Leucine	(4)	Lysine
84.	Aminoacyl t-RNA	is required for all exc	cept	:		
	(1) Methionine			Hydroxyproli	ne	
	(3) Cystine		(4)	Cysteine		
85.		or acidification of ur	ine i	s:		
	(1) Proximal conv		` '	Distal convol		ubule
	(3) Collecting duc	t	(4)	Loop of Henl	e	
86.	Prostaglandin decr	eases cAMP levels in	:			
	(1) Thyroid	(2) Lung	(3)	Adipose tissu	ıe (4)	Platelets
87.	HDL is synthesized	and secreted from	:			
	(1) Liver		(2)	Kidney		
	(3) Pancreas		(4)	Muscle		
88.	The lowered gluco is caused by :	kinase leading to dir	nini	shed fatty acid	synth	nesis in the liver
	(1) Feeding	(2) Overfeeding	(3)	Starvation	(4)	Diarrhea
89.	The edible part of l	itchi is :				
	(1) Mesocarp	(2) Thalamus	(3)	Aril	(4)	Seed coat
90.	Fatty liver results in	n the deficiency of :				
	(1) Vitamin A	(2) Stearic acid	(3)	Caproic acid	(4) P	antothenic acid
91.	Ketone bodies are t	utilized in :				
	(1) Mitochondria		(2)	Extrahepatic t	issues	.
	(3) Nucleus		(4)	Chromosome		
	(b) Mucieus		(*)	Cigoniosonie		

92.	Eicosanoids are synthesized from:	
	(1) Palmitic acid	(2) Stearic acid
	(3) Butyric acid	(4) Arachidonic acid
93.	Cyclo-oxygenase is known as:	
	(1) Suicidal enzyme	(2) Inhibiting enzyme
	(3) Oxidizing enzyme	(4) Reducing enzyme
94.	Leukotrienes are important in :	
	(1) Oxidation reaction	(2) Reduction reaction
	(3) Allergic reaction	(4) Inhibitory reaction
95.	The basic amino acid is:	
	(1) Glycine (2) Proline	(3) Serine (4) Histidine
96.	Proteins react with Biuret reagent sugg	esting 2 or more :
	(1) Hydrogen bond	(2) Peptide bond
	(3) Disulfide bond	(4) Hydrophobic bond
97.	The milk protein in infants is digested l	by:
	(1) Pepsin (2) Trypsin	(3) Chymotrypsin (4) Chymosin
98.	Trypsin hydrolyzes peptide linkages in	the small intestine containing:
	(1) Arginine (2) Histidine	(3) Serine (4) Aspartate
99.	The half life of an antibody is about:	
	(1) One week (2) Two weeks	(3) Three weeks (4) Four weeks
00.	The metabolism of protein is integrated	d with carbohydrate and fat through :
	(1) Oxaloacetate (2) Malate	(3) Citrate (4) Isocitrate
01.	Amino acids provide the nitrogen for t	the synthesis of :
	(1) Phospholipids	(2) Uric acid
	(3) Glycolipids	(4) Chondroitin sulfates
02.	Keratin, the protein of hair, is synthesiz	zed from:
	(1) Glycine (2) Proline	(3) Methionine (4) Serine
	(11) P.T.O

103.	The end product of amino acid nitrogen metabolism in uricotelic animals is :									
	(1) Urea					(2)	Uric acid			
	(3) Bilirul	bin				(4)	Biliverdin			
104.	Most amino acids are substrate for transamination except:									
	(1) Alanin	ie	(2)	Serine		(3)	Threonine	(4)	Valine	
105.	Oxidative in:	conversi	on of	f amino a	acids to	the	eir correspondir			сси
	(1) Liver &	& Kidney	(2)	Adipose	tissue	(3)	Pancreas	(4)	Intestine	
106.	The symptoms of ammonia intoxication includes:									
	(1) Blurri	ng of visi	ion			(2)	Mental retarda	tion		
	(3) Const	ipation				(4)	Diarrhea			
107.	Amino acie	d with di	ssoci	ation con	stant cl	oses	st to physiologic	al pi	His:	
	(1) Serine	•	(2)	Histidine	:	(3)	Threonine	(4)	Proline	
108.	Sources of	nitrogen	ı in u	rea cycle	are :					
	(1) Aspartate and ammonia					(2)	Glutamate and	amn	nonia	
	(3) Argin	ine and a	mme	onia		(4)	Uric acid			
109.	Force not acting in an enzyme substrate complex:									
	(1) Electro	ostatic				(2)	Covalent			
	(3) Hydro	gen				(4)	Van der Waals			
110.	Cellular ox	xidation i	s inh	ibited by	:					
	(1) Cyani	de				(2)	Carbon dioxide	•		
	(3) Choco	late				(4)	Carbonated be	verag	zes	
111.	Triple bone	ds are for	rmed	between	:					
	(1) A-T		(2)	G-C		(3)	A-G	(4)	C-T	
112.	Which fatty	y acid is f	found	d exclusiv	vely in l	orea	st milk ?			
	(1) Linoleic acid					(2)	Linolenic acid			
	(3) Docos	ahexanoi	ic aci	d		(4)	Palmitic acid			

Enzyme that protects the brain from free radical injury is:							
(1)	(1) Myeloperoxidase				Superoxide dismutase		
(3)	Monoamine ox	cidas	e	(4)	Hydroxylase		
Natural rubber is a polymer derived from :							
(1)	Ethylene	(2)	Propylene	(3)	Isoprene	(4)	Butadiene
	-	event	s contraction l	ру с	overing binding	g site	s on actin and
(1)	Troponin	(2)	Calmodulin	(3)	Thymosin	(4)	Tropomyosin
Ur	emia occurs in :						
(1) Cirrhosis of liver					Nephritis		
(3)	Diabetes mellit	us		(4)	Coronary thro	mbos	is
The	sparing action	of m	ethionine is :				
(1)	Tyrosine	(2)	Tryptophan	(3)	Arginine	(4)	Cystine
Which of the following inhibitor of thymidylate synthase is used as a chemotherapeutic agent?							
(1)	Methotrexate			(2)	Fluorouridine		
(3)	Aminopterin			(4)	Trimethoprim		
	Which of the following best describes the role of sigma factor in RNA synthesis?						
(1) It is essential for elongation							
(2) It is responsible for the recognition of the specific initiation sites on a DNA template							
(3) It is responsible for releasing the completed chain							
(4)	It is responsible	for	separation of D	NA s	strands		
120. In oxidative phosphorylation, the ATP production and respiratory linked by :						atory chain are	
(1)	Chemical meth	ods		(2)	Physical meth	ods	
(3)	Chemiosmotic	metl	nods	(4)	Conformation	al cha	ınges
(13))			P.T.O.
	(1) (3) Nat (1) Wh my (1) Ur (1) (3) The (1) Wh che (1) (3) Wh syn (1) (2) (3) (4) In (6) In (1)	(1) Myeloperoxida (3) Monoamine ox Natural rubber is a (1) Ethylene Which protein pre myosin? (1) Troponin Uremia occurs in: (1) Cirrhosis of live (3) Diabetes mellit The sparing action of (1) Tyrosine Which of the foll chemotherapeutic a (1) Methotrexate (3) Aminopterin Which of the foll synthesis? (1) It is essential fo (2) It is responsible template (3) It is responsible (4) It is responsible In oxidative phosplinked by: (1) Chemical method	(1) Myeloperoxidase (3) Monoamine oxidas Natural rubber is a poly (1) Ethylene (2) Which protein prevent myosin? (1) Troponin (2) Uremia occurs in: (1) Cirrhosis of liver (3) Diabetes mellitus The sparing action of me (1) Tyrosine (2) Which of the following chemotherapeutic agent (1) Methotrexate (3) Aminopterin Which of the following synthesis? (1) It is essential for elo (2) It is responsible for template (3) It is responsible for template (4) It is responsible for the following synthesis? In oxidative phosphory linked by: (1) Chemical methods	 Myeloperoxidase Monoamine oxidase Natural rubber is a polymer derived from the contraction of the protein prevents contraction of the myosin? Troponin (2) Calmodulin Uremia occurs in: Cirrhosis of liver Diabetes mellitus The sparing action of methionine is: Tyrosine (2) Tryptophan Which of the following inhibitor of the chemotherapeutic agent? Methotrexate Aminopterin Which of the following best describes ynthesis? It is responsible for the recognition template It is responsible for releasing the contraction of Diamondative phosphorylation, the AT linked by: Chemical methods Chemical methods Chemical methods Chemical methods 	(1) Myeloperoxidase (2) (3) Monoamine oxidase (4) Natural rubber is a polymer derived from: (1) Ethylene (2) Propylene (3) Which protein prevents contraction by comyosin? (1) Troponin (2) Calmodulin (3) Uremia occurs in: (1) Cirrhosis of liver (2) (3) Diabetes mellitus (4) The sparing action of methionine is: (1) Tyrosine (2) Tryptophan (3) Which of the following inhibitor of the chemotherapeutic agent? (1) Methotrexate (2) (3) Aminopterin (4) Which of the following best describes synthesis? (1) It is essential for elongation (2) It is responsible for the recognition of template (3) It is responsible for releasing the complete) (4) It is responsible for separation of DNA solution in the synthesis? (1) Chemical methods (2)	(3) Monoamine oxidase (4) Hydroxylase Natural rubber is a polymer derived from: (1) Ethylene (2) Propylene (3) Isoprene Which protein prevents contraction by covering binding myosin? (1) Troponin (2) Calmodulin (3) Thymosin Uremia occurs in: (1) Cirrhosis of liver (2) Nephritis (3) Diabetes mellitus (4) Coronary throi The sparing action of methionine is: (1) Tyrosine (2) Tryptophan (3) Arginine Which of the following inhibitor of thymidylate synchemotherapeutic agent? (1) Methotrexate (2) Fluorouridine (3) Aminopterin (4) Trimethoprim Which of the following best describes the role of significant synthesis? (1) It is responsible for the recognition of the specific initiatemplate (3) It is responsible for releasing the completed chain (4) It is responsible for separation of DNA strands In oxidative phosphorylation, the ATP production and relinked by: (1) Chemical methods (2) Physical methods (3) Chemiosmotic methods (4) Conformation	(1) Myeloperoxidase (2) Superoxide dismut. (3) Monoamine oxidase (4) Hydroxylase Natural rubber is a polymer derived from: (1) Ethylene (2) Propylene (3) Isoprene (4) Which protein prevents contraction by covering binding site myosin? (1) Troponin (2) Calmodulin (3) Thymosin (4) Uremia occurs in: (1) Cirrhosis of liver (2) Nephritis (3) Diabetes mellitus (4) Coronary thrombos The sparing action of methionine is: (1) Tyrosine (2) Tryptophan (3) Arginine (4) Which of the following inhibitor of thymidylate synthase chemotherapeutic agent? (1) Methotrexate (2) Fluorouridine (3) Aminopterin (4) Trimethoprim Which of the following best describes the role of sigma synthesis? (1) It is responsible for the recognition of the specific initiation template (3) It is responsible for releasing the completed chain (4) It is responsible for separation of DNA strands In oxidative phosphorylation, the ATP production and respir linked by: (1) Chemical methods (2) Physical methods (3) Chemiosmotic methods (4) Conformational chain

121.	TRH stimulation testing is useful in the diagnosis of disorders of which following hormones?							
	(1) Insulin	•	(2) ACTH					
	(3) Growth horr	mone	(4) PTH					
122.	Elasticity of the	corneal layer of skin	due to the presence of :					
	(1) Histidine	(2) Keratin	(3) Lysine (4) C	Cysteine				
123.	Entropy in a biological system does not increase because:							
	(1) It is an open	system	(2) It is a closed system	2) It is a closed system				
	(3) It is governe	d by vitalism	(4) It is related to thermo	dynamics				
124.								
	(1) Single strand	ded DNA	(2) Single stranded RNA	· ·				
	(3) Double strar	nded DNA	(4) Double stranded RNA					
125.	All of the follow	ring drugs can cross p	acenta <i>except</i> :					
	(1) Phenytoin		(2) Diazepam					
	(3) Morphin		(4) Heparin					
126.	The oxidation as	nd phosphorylation is	completely blocked by :					
	(1) Oligomycin	(2) Streptomycin	(3) Puromycin (4) G	entamycin				
127.	Zinc is a constitu	uent of :						
	(1) Carbonic an	nhydrase	(2) Malate dehydrogenas	Malate dehydrogenase				
	(3) Amylase		(4) Aldolase					
128.	The absorption	of calcium is increase	by:					
	(1) Fat	(2) Protein	(3) Cereal (4) Vi	tamin A				
129.	Biological value	of proteins depend of	the presence of :					
	(1) Essential am	ino acids	(2) Semi-essential amino	Semi-essential amino acids				
	(3) Non-essentia	al amino acids	(4) Incomplete proteins					
130.	Carotenes are tra	ansported through :						
	(1) Proteins	(2) Lipids	(3) Minerals (4) Li	poproteins				

131.	The poor source	e of Vitamin D is :				
	(1) Milk	(2) Butter	(3) Egg	(4) Liver		
132.	Sterilized milk	is devoid of :				
	(1) Vitamin A	(2) Vitamin I	3 (3) Vitamin C	(4) Vitamin D		
133.	Blotting techniq	ue used for identi	fication of protein is :			
	(1) Northern bl	ot (2) Southern	blot (3) Eastern blot	(4) Western blot		
134.	The serum enzy	yme used to evalu	ate pancreatic function is	· •:		
	(1) ALP	(2) Amylase	(3) AST	(4) LDH		
135.	The key regula	tory enzyme of ch	olesterol synthesis is :			
	(1) HMG CoA	synthase	(2) HMG CoA re	HMG CoA reductase		
	(3) Thiolase		(4) Mevalonate l	kinase		
136.	All of the follow	ving Vitamins play	va key role in TCA cycle	except :		
	(1) Niacin	(2) Riboflavi	n (3) Thiamine	(4) Folic acid		
137.	Dry ice is:					
	(1) Solid ice w	ithout any water	(2) Solid CO ₂			
	(3) Solid C_6H_6		(4) Solid SO ₂			
138.	Aminosugar is	the component of	:			
	(1) Glycogen		(2) Cellulose			
	(3) DNA		(4) Blood group	substances		
139.	Purely ketogen	ic amino acid is :				
	(1) Arginine	(2) Leucine	(3) Tryptophan	(4) Valine		
140.	Number of disu	ılphide bonds in tl	ne structure of insulin is :	;		
	(1) One	(2) Two	(3) Three	(4) Four		
141.	Deficiency of coactivity of:	opper affects the	formation of normal col	lagen by reducing the		
	(1) Galactosyl t	ransferase	(2) ALA syntheta	ise		
	(3) Lysyl hydro	oxylase	(4) Lysyl oxidase	•		
			(15)	P.T.O.		

142.	The sugar residues in amylose are linked by :								
	(1) Alpha-l, 4 linkage			Beta-1, 4 linkage					
	(3) Beta-l, 6 linkage	e	(4)	Alpha-I, 2 link	age				
143.	Which of the following lipid accumulates in Tay-sach's disease?								
	(1) Sphingomyelin		(2)	Ganglioside GM2					
	(3) Glucocerebroside			Galactocerebroside					
144.	1. The antibody class that can cross the placental barrier to protect the fetus is:								
	(1) IgA	(2) IgE	(3)	IgG	(4) IgM				
145. All of the following enzymes are catalyzing the irre					ersible reactions of				
	glycolysis except:								
	(1) Hexokinase			Phosphofructokinase					
	(3) Phosphoglycer	rate kinase	(4)	Pyruvate kinas	e				
146.	Rate limiting enzy	me of urea cycle is:							
	(1) Carbamoyl phosphate synthetase I								
	(3) Ornathine transcarbamoylase								
	(4) Argininosuccii	nate synthase							
147.	Carcinogenicity with	th radiant energy is	to ca	use damage to :					
	(1) RNA	(2) DNA	(3)	mRNA	(4) tRNA				
148.	The renal glutamin	ase activity is enhan	ced l	р у :					
	(1) Acidosis	(2) Alkalosis	(3)	Oxidases	(4) Phosphatases				
149.	Respiration is direc	tly linked with the b	uffe	r systems of :					
	(1) Bicarbonate	(2) Phosphate	(3)	Protein	(4) Hemoglobin				
150.	The pathogenic bac	teria are killed by:							
	(1) Chlorine	(2) Fluorine	(3)	Bromine	(4) Iodine				

अभ्यर्थियों के लिए निर्देश

(इस पुरितका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल *नीली। काली बाल-प्वाइंट पेन* से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख ले कि प्रश्नपत्र में सभी पृष्ठ मौजूद है और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा रहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- **4.** अपना **अनुक्रमाक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से** निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक संख्या और ओ० एम० आर० पत्र संख्या की प्रविष्टियों में उपरिलेखन की अनुमित नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाढ़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्याही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिये इस पुस्तिका के मुखपृष्ट के अंदर वाला पृष्ट तथा अंतिम खाली पृष्ट का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल ओ० एम० आर० उत्तर-पत्र ही परीक्षा भवन में जमा करें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमित नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का / की भागी होगा / होगी।